Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Internalization and intracellular trafficking of a PTD‐conjugated anti‐fibrotic peptide, AZX100, in human dermal keloid fibroblasts

Identifieur interne : 001709 ( Main/Exploration ); précédent : 001708; suivant : 001710

Internalization and intracellular trafficking of a PTD‐conjugated anti‐fibrotic peptide, AZX100, in human dermal keloid fibroblasts

Auteurs : Charles R. Flynn [États-Unis] ; Joyce Cheung-Flynn [États-Unis] ; Christopher C. Smoke [États-Unis] ; David Lowry [États-Unis] ; Robert Roberson [États-Unis] ; Michael R. Sheller [États-Unis] ; Colleen M. Brophy [États-Unis]

Source :

RBID : ISTEX:F36173A023E5806CB549F2003AC04347DED97DF2

English descriptors

Abstract

A challenge in advanced drug delivery is selectively traversing the plasma membrane, a barrier that prohibits the intracellular delivery of most peptide and nucleic acid‐based therapeutics. A variety of short amino acid sequences termed protein transduction domains (PTDs) first identified in viral proteins have been utilized for over 20 years to deliver proteins nondestructively into cells, however, the mechanisms by which this occurs are varied and cell‐specific. Here we describe the results of live cell imaging experiments with AZX100, a cell‐permeable anti‐fibrotic peptide bearing an “enhanced” PTD (PTD4). We monitored fluorescently labeled AZX100 upon cell surface binding and subsequent intracellular trafficking in the presence of cellular process inhibitors and various well‐defined fluorescently labeled cargos. We conclude that AZX100 enters cells via caveolae rapidly, in a manner that is independent of glycoconjugates, actin/microtubule polymerization, dynamins, multiple GTPases, and clathrin, but is associated with lipid rafts as revealed by methyl‐β‐cylodextrin. AZX100 treatment increases the expression of phospho‐caveolin (Y14), a critical effector of focal adhesion dynamics, suggesting a mechanistic link between caveolin‐1 phosphorylation and actin cytoskeleton dynamics. Our results reveal novel and interesting properties of PTD4 and offer new insight into the cellular mechanisms facilitating an advanced drug delivery tool. © 2010 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3100–3121, 2010

Url:
DOI: 10.1002/jps.22087


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Internalization and intracellular trafficking of a PTD‐conjugated anti‐fibrotic peptide, AZX100, in human dermal keloid fibroblasts</title>
<author>
<name sortKey="Flynn, Charles R" sort="Flynn, Charles R" uniqKey="Flynn C" first="Charles R." last="Flynn">Charles R. Flynn</name>
</author>
<author>
<name sortKey="Cheung Lynn, Joyce" sort="Cheung Lynn, Joyce" uniqKey="Cheung Lynn J" first="Joyce" last="Cheung-Flynn">Joyce Cheung-Flynn</name>
</author>
<author>
<name sortKey="Smoke, Christopher C" sort="Smoke, Christopher C" uniqKey="Smoke C" first="Christopher C." last="Smoke">Christopher C. Smoke</name>
</author>
<author>
<name sortKey="Lowry, David" sort="Lowry, David" uniqKey="Lowry D" first="David" last="Lowry">David Lowry</name>
</author>
<author>
<name sortKey="Roberson, Robert" sort="Roberson, Robert" uniqKey="Roberson R" first="Robert" last="Roberson">Robert Roberson</name>
</author>
<author>
<name sortKey="Sheller, Michael R" sort="Sheller, Michael R" uniqKey="Sheller M" first="Michael R." last="Sheller">Michael R. Sheller</name>
</author>
<author>
<name sortKey="Brophy, Colleen M" sort="Brophy, Colleen M" uniqKey="Brophy C" first="Colleen M." last="Brophy">Colleen M. Brophy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F36173A023E5806CB549F2003AC04347DED97DF2</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/jps.22087</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-T1WS49DD-6/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A55</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A55</idno>
<idno type="wicri:Area/Istex/Curation">001A55</idno>
<idno type="wicri:Area/Istex/Checkpoint">000654</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000654</idno>
<idno type="wicri:doubleKey">0022-3549:2010:Flynn C:internalization:and:intracellular</idno>
<idno type="wicri:Area/Main/Merge">001712</idno>
<idno type="wicri:Area/Main/Curation">001709</idno>
<idno type="wicri:Area/Main/Exploration">001709</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Internalization and intracellular trafficking of a PTD‐conjugated anti‐fibrotic peptide, AZX100, in human dermal keloid fibroblasts</title>
<author>
<name sortKey="Flynn, Charles R" sort="Flynn, Charles R" uniqKey="Flynn C" first="Charles R." last="Flynn">Charles R. Flynn</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Center for Metabolic Biology, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Correspondence address: Department of Surgery, Vanderbilt University Medical School, MRB IV Langford Hall 8465A, Nashville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cheung Lynn, Joyce" sort="Cheung Lynn, Joyce" uniqKey="Cheung Lynn J" first="Joyce" last="Cheung-Flynn">Joyce Cheung-Flynn</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Capstone Therapeutics, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Smoke, Christopher C" sort="Smoke, Christopher C" uniqKey="Smoke C" first="Christopher C." last="Smoke">Christopher C. Smoke</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Center for Metabolic Biology, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lowry, David" sort="Lowry, David" uniqKey="Lowry D" first="David" last="Lowry">David Lowry</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>School of Life Sciences, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Roberson, Robert" sort="Roberson, Robert" uniqKey="Roberson R" first="Robert" last="Roberson">Robert Roberson</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>School of Life Sciences, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sheller, Michael R" sort="Sheller, Michael R" uniqKey="Sheller M" first="Michael R." last="Sheller">Michael R. Sheller</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Capstone Therapeutics, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Brophy, Colleen M" sort="Brophy, Colleen M" uniqKey="Brophy C" first="Colleen M." last="Brophy">Colleen M. Brophy</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Center for Metabolic Biology, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Pharmaceutical Sciences</title>
<title level="j" type="alt">JOURNAL OF PHARMACEUTICAL SCIENCES</title>
<idno type="ISSN">0022-3549</idno>
<idno type="eISSN">1520-6017</idno>
<imprint>
<biblScope unit="vol">99</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="3100">3100</biblScope>
<biblScope unit="page" to="3121">3121</biblScope>
<biblScope unit="page-count">22</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-07">2010-07</date>
</imprint>
<idno type="ISSN">0022-3549</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-3549</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Aclar disks</term>
<term>Actin</term>
<term>Actin cytoskeleton</term>
<term>Actin cytoskeleton dynamics</term>
<term>Actin deformation</term>
<term>Actin polymerization</term>
<term>Actin rearrangement</term>
<term>Adenylyl cyclase</term>
<term>Adobe photoshop</term>
<term>Adobe systems</term>
<term>Alexa</term>
<term>American peptide</term>
<term>American pharmacists association</term>
<term>Amino</term>
<term>Amino acid</term>
<term>Amino terminus</term>
<term>Arizona state university</term>
<term>Biol</term>
<term>Biol chem</term>
<term>Bodipy</term>
<term>Bodipy lactosylceramide</term>
<term>Bronectin</term>
<term>Brophy</term>
<term>Cacodylate buffer</term>
<term>Capstone therapeutics</term>
<term>Cationic peptides</term>
<term>Caveolae</term>
<term>Caveolin</term>
<term>Caveolin expression</term>
<term>Cell biol</term>
<term>Cell culture</term>
<term>Cell growth</term>
<term>Cell membrane</term>
<term>Cell surface</term>
<term>Cell surface binding</term>
<term>Cell viability</term>
<term>Cells transiently</term>
<term>Cellular</term>
<term>Cellular uptake</term>
<term>Chem</term>
<term>Cholera toxin subunit</term>
<term>Chondroitin sulfate</term>
<term>Clathrinmediated endocytosis</term>
<term>Colocalization</term>
<term>Colocalization results</term>
<term>Colocalize</term>
<term>Complete growth media</term>
<term>Constitutively</term>
<term>Control cells</term>
<term>Cytochalasin</term>
<term>Cytoskeleton</term>
<term>Different cells</term>
<term>Diffuse actin network</term>
<term>Digital camera</term>
<term>Dynamin</term>
<term>Early endosomes</term>
<term>Egfp</term>
<term>Electrophoresis buffer</term>
<term>Encoding</term>
<term>Encoding egfp</term>
<term>Encoding hemagglutinin epitope</term>
<term>Endocytic</term>
<term>Endocytosis</term>
<term>Endocytotic vesicles</term>
<term>Endosomes</term>
<term>Equal amounts</term>
<term>Flynn</term>
<term>Focal adhesion dynamics</term>
<term>Focal adhesions</term>
<term>Fusion protein</term>
<term>Ganglioside</term>
<term>Heparin</term>
<term>Human virus</term>
<term>Hypertrophic scarring</term>
<term>Image series</term>
<term>Immunoblot transfer buffer</term>
<term>Inhibitor</term>
<term>Internalization</term>
<term>Intracellular</term>
<term>Intracellular delivery</term>
<term>Juan bonifacino</term>
<term>July</term>
<term>Keloid</term>
<term>Kinase</term>
<term>Komalavilas</term>
<term>Late endosomes</term>
<term>Leucine mutation</term>
<term>Lipid</term>
<term>Lipid raft</term>
<term>Lipid rafts</term>
<term>Lter sets</term>
<term>Lysine mutation</term>
<term>Lysis buffer</term>
<term>Macropinocytotic regurgitation</term>
<term>Membrane</term>
<term>Membrane integrity</term>
<term>Microtubule</term>
<term>Monoclonal antibodies</term>
<term>Muscle actin</term>
<term>Muscle cells</term>
<term>Mutant</term>
<term>Mutant dynamin</term>
<term>Mutation</term>
<term>Open arrows</term>
<term>Optimized protein transduction domain</term>
<term>Original wound</term>
<term>Osmium tetroxide</term>
<term>Other ptds</term>
<term>Pathway</term>
<term>Peptide</term>
<term>Permeabilized cells</term>
<term>Pharmaceutical</term>
<term>Pharmaceutical sciences</term>
<term>Pharmacological inhibitors</term>
<term>Phosphatase inhibitor cocktail</term>
<term>Phosphorylated</term>
<term>Phosphorylation</term>
<term>Physiol lung cell</term>
<term>Plasma membrane</term>
<term>Plasmid</term>
<term>Plasmid dnas</term>
<term>Plasmid encoding</term>
<term>Plasmids encoding</term>
<term>Potential binding</term>
<term>Propidium iodide</term>
<term>Protein transduction domains</term>
<term>Ptd4</term>
<term>Quiescent cells</term>
<term>Rabbit antibody</term>
<term>Rafts</term>
<term>Scaffolding domain</term>
<term>Skin penetration</term>
<term>Small heat protein</term>
<term>Small heat shock protein</term>
<term>Statistical analysis</term>
<term>Subcellular localization</term>
<term>Supplemental movie</term>
<term>Threonine mutation</term>
<term>Transduction</term>
<term>Transfected transiently</term>
<term>Transfection reagent</term>
<term>Transiently</term>
<term>Transmission electron microscopy</term>
<term>Transport mechanisms</term>
<term>Untreated</term>
<term>Untreated cells</term>
<term>Uorescence</term>
<term>Uorescence micrograph</term>
<term>Uorescence microscopy</term>
<term>Uorescence patterns</term>
<term>Uorescence signal</term>
<term>Uorescent</term>
<term>Uorescent protein</term>
<term>Uorescent proteins</term>
<term>Uptake</term>
<term>Uranyl acetate</term>
<term>Vesicle</term>
<term>Vesicle formation</term>
<term>Vesicles colocalized</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A challenge in advanced drug delivery is selectively traversing the plasma membrane, a barrier that prohibits the intracellular delivery of most peptide and nucleic acid‐based therapeutics. A variety of short amino acid sequences termed protein transduction domains (PTDs) first identified in viral proteins have been utilized for over 20 years to deliver proteins nondestructively into cells, however, the mechanisms by which this occurs are varied and cell‐specific. Here we describe the results of live cell imaging experiments with AZX100, a cell‐permeable anti‐fibrotic peptide bearing an “enhanced” PTD (PTD4). We monitored fluorescently labeled AZX100 upon cell surface binding and subsequent intracellular trafficking in the presence of cellular process inhibitors and various well‐defined fluorescently labeled cargos. We conclude that AZX100 enters cells via caveolae rapidly, in a manner that is independent of glycoconjugates, actin/microtubule polymerization, dynamins, multiple GTPases, and clathrin, but is associated with lipid rafts as revealed by methyl‐β‐cylodextrin. AZX100 treatment increases the expression of phospho‐caveolin (Y14), a critical effector of focal adhesion dynamics, suggesting a mechanistic link between caveolin‐1 phosphorylation and actin cytoskeleton dynamics. Our results reveal novel and interesting properties of PTD4 and offer new insight into the cellular mechanisms facilitating an advanced drug delivery tool. © 2010 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3100–3121, 2010</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arizona</li>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Arizona">
<name sortKey="Flynn, Charles R" sort="Flynn, Charles R" uniqKey="Flynn C" first="Charles R." last="Flynn">Charles R. Flynn</name>
</region>
<name sortKey="Brophy, Colleen M" sort="Brophy, Colleen M" uniqKey="Brophy C" first="Colleen M." last="Brophy">Colleen M. Brophy</name>
<name sortKey="Cheung Lynn, Joyce" sort="Cheung Lynn, Joyce" uniqKey="Cheung Lynn J" first="Joyce" last="Cheung-Flynn">Joyce Cheung-Flynn</name>
<name sortKey="Flynn, Charles R" sort="Flynn, Charles R" uniqKey="Flynn C" first="Charles R." last="Flynn">Charles R. Flynn</name>
<name sortKey="Flynn, Charles R" sort="Flynn, Charles R" uniqKey="Flynn C" first="Charles R." last="Flynn">Charles R. Flynn</name>
<name sortKey="Lowry, David" sort="Lowry, David" uniqKey="Lowry D" first="David" last="Lowry">David Lowry</name>
<name sortKey="Roberson, Robert" sort="Roberson, Robert" uniqKey="Roberson R" first="Robert" last="Roberson">Robert Roberson</name>
<name sortKey="Sheller, Michael R" sort="Sheller, Michael R" uniqKey="Sheller M" first="Michael R." last="Sheller">Michael R. Sheller</name>
<name sortKey="Smoke, Christopher C" sort="Smoke, Christopher C" uniqKey="Smoke C" first="Christopher C." last="Smoke">Christopher C. Smoke</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001709 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001709 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:F36173A023E5806CB549F2003AC04347DED97DF2
   |texte=   Internalization and intracellular trafficking of a PTD‐conjugated anti‐fibrotic peptide, AZX100, in human dermal keloid fibroblasts
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021